ONE-STEP SYNTHESIS OF 3-DIALKYLAMINOINDOLIZINES

Akio OHSAWA, Yoshihito ABE, and Hiroshi IGETA School of Pharmaceutical Sciences, Showa University, Shinagawa-ku, Tokyo 142

3-Dialkylaminoindolizines, pyrrolo[1,2- \underline{a}]quinoline, pyrrolo-[2,1- \underline{a}]isoquinoline, and 2-methyl-pyrrolo[1,2- \underline{b}]pyridazine were obtained from the corresponding \underline{A} -halo-azaaromatics, propargyl alcohol and secondary amines in the presence of catalytic amounts of Pd(PPh $_3$) $_2$ Cl $_2$ and CuI.

The general method for the preparation of aminoindolizines has not been established although considerable attention has been given to indolizines and a number of their derivatives have been synthesized in view of physical, $^{1)}$ chemical, $^{2)}$ and biochemical $^{3)}$ interests.

We report here a one-step synthesis of 3-dialkylaminoindolizines (1a-e) and a 5-aza analogue (1f) from α -halo-azaaromatics.

A mixture of 2-bromopyridine (2a, 0.8 g, 5 mmol), propargyl alcohol (3, 0.6 g, 11 mmol); piperidine (3 ml), $^{4)}$ Pd(PPh₃)₂Cl₂ (4, 0.073 g, 0.1 mmol), and CuI (5, 0.005 g, 0.025 mmol) was heated (80°C for 16 h), and purification of the products using chromatography (basic Al₂O₃) gave a somewhat air-sensitive solid (1a, yield 0.36 g, 36 %, needles from hexane, mp 58°C). $^{5)}$

The structure of <u>la</u> inclusive of the position where the piperidino group was introduced was synthetically confirmed. Namely, the product which was obtained (<u>ca</u>. 5 % yield) by the aminolysis ($C_5H_{10}NLi/THF$) of 3-chloroindolizine (<u>6</u>) was identical with <u>la</u>. Other 3-dialkylaminoindolizines (<u>1b-e</u>) were obtained in a similar way and 3-chloro-6-methylpyridazine (<u>2d</u>) was also transformed into <u>lf</u> as shown in the Table.

		Conditions				
Halide	Amine	°C	hr	Product	Yield(%)	Remark
2a 2-Br-pyridine ∼	(CH ₂) ₅ NH	80	16	1a ∼	36	mp 58°C
	ONH	80	16	1b ∼	12	mp 85°C
	Et ₂ NH	70	3 ^{a)}	1c ∼	11	bp ₃ 50°C
2b 2-C1-quinoline	Et ₂ NH	70	16	1d ≈	17	bp ₂ 140°
2c 1-C1-isoquinoline	Et ₂ NH	70	16	1e ∼	18	bp ₃ 210°
2d 3-C1-6-Me-pyridazine	Et ₂ NH	70	16	$\overset{ ext{1f}}{\sim}$	49	bp ₁ 100°

Table. Preparetion of dialkylaminoindolizines

The mechanism of the formation of 1c could be explained by the scheme in the Chart (next page). It has been known that the L-halo-azaaromatics undergo alkynylation with monosubstituted acetylenes in the presence of amines and $Pd(PPh_3)_2Cl_2-CuI$, and actually, the reaction of 2a with 3, Et_2NH , 4, and 5 under a mild condition ($30^{\circ}C$ for 16 h) afforded the 2-alkynylated pyridine, i.e., 3-(2-pyridyl)-2-propyn-1-ol (7, 89%), although 7 was not obtained in the absence of either 4 or 5.

a) Prolonged reaction time (16 h) lowered the yield.

b) All boiling points present bath temperature.

When $\frac{7}{2}$ was heated (80°C, 16 h) in Et₂NH with $\frac{4}{2}$ and $\frac{5}{2}$, the expected indolizine (1c) was obtained in 15 % yield. Heating of $\frac{7}{2}$ in Et₂NH did not give $\frac{1}{2}$ C and the starting material was recovered.

These observations support the idea that 7 is formed initially and subsequent ring closure of 7 to 1c requires the catalysts although their roles in the postulated course are as yet unclear.

Moreover, the fact that the alternatively available 2-(2-pyridy1)acrylaldehyde $(8)^9$ gave 1c (56%) on treatment with Et₂NH at room temperature suggests that 8 might be the intermediate in the cyclization of 7 to 1c. Further investigation on the mechanism is in progress.

References and Notes

- 1) For example, A. Gamba and G. Favini, Gazz. Chim. Ital., 98, 167 (1968) and references therein.
- 2) T. Uchida and K. Matsumoto, Synthesis, 209 (1976) and references therein.
- 3) E. Wenkert, Chem. and Ind., 1088 (1953).
- 4) The use of primary amines did not afford the expected products.
- 5) UV spectrum of 1a (EtOH); 241 nm (£=3.8 x 10^4), IR (CHCl $_3$); 2800-3000 (ν_{C-H}) and 1628 cm $^{-1}$ ($\nu_{C=C}$), 1 H-NMR (CDCl $_3$); 5 1.4-2.0 (6H, br. m), 2.7-3.1 (4H, br. m), 6.2-6.7 (4H, m), 7.1-7.4 (1H, m), and 7.7-8.0 (1H, m).
- 6) K. B. Nielsen, Acta Chem. Scand., <u>B31</u>, 224 (1977); 3-chloroindolizine was obtained from the reaction of 2-vinylpyridine and dichlorocarbene in very low yield.
- 7) a) K. Sonogashira, Y. Tohda, and N. Hagihara, Tetrahedron Letters, 4467 (1975),
 - b) K. Edo, H. Yamanaka, and T. Sakamoto, Heterocycles, 9, 271 (1978),
 - c) Y. Abe, A. Ohsawa, H. Arai, and H. Igeta, Heterocycles, 9, 1397 (1978).
- 8) Formation of 1c was negligible.
- 9) I. Hagedorn and W. Hohler, Angew. Chem., <u>87</u>, 486 (1975); the preparation of <u>8</u> from commercially available materials requires three steps and the overall yield of <u>8</u> is far lower than those shown in the Table.

(Received December 22, 1978)